Math 201 section 10.1

Extra Formulas & Problems

Formula 1++: $\lim_{n \to \infty} \frac{\ln n}{n^c} = 0 \quad \text{for any } c > 0.$ Example : $\lim_{n \to \infty} \frac{\ln n}{n^{0.0001}} = 0$ Formula 7: $\lim_{n \to \infty} \frac{n!}{n^n} = 0 \quad \text{(see Exercise 63)}$ Formula 8: $\lim_{n \to \infty} \sqrt[n]{n!} = \infty \quad \text{(Most students think the answer is 1 because } \lim_{n \to \infty} \sqrt[n]{n} = 1. \text{)}$

1) Great problem: Find $\lim_{n \to \infty} (\frac{n+9}{n+2})^n$

Fastest Solution:
$$\lim_{n \to \infty} (\frac{n+9}{n+2})^n = \lim_{n \to \infty} \frac{(1+\frac{9}{n})^n}{(1+\frac{2}{n})^n} = \frac{e^9}{e^2} = e^7$$

REMINDER : 1^{∞} , 0^{0} , ∞^{0} are the <u>undefined limits</u> in exponents (why?) (Take their ln)

2) $\lim_{n \to \infty} (1 + \frac{3}{n})^n = 1^\infty$!!!(undefined) The answer is of course e^3 (by Formula 5). 3) $\lim_{n \to \infty} (\frac{n+9}{n+2})^n = 1^\infty$!!!(undefined) The answer here is e^7 (see Great problem 1 above) 4) $\lim_{n \to \infty} 1^n = 1$ because we are taking the limit of the sequence 1, 1, 1, 1, 1,

The following method in taking limits of exponents is acceptable to me **provided** we do NOT run into 1^{∞} , 0^{0} , ∞^{0} (the <u>Undefined limits</u> in exponents). For example,

5)
$$\lim_{n \to \infty} \left(\frac{5n+1}{3n+2} \right)^n = \left(\frac{5}{3} \right)^{\infty} = \infty$$

6)
$$\lim_{n \to \infty} \left(\frac{3n+9}{5n+2}\right)^n = \left(\frac{3}{5}\right)^\infty = 0$$